An electromagnet is a type of magnet in which the magnetic field is produced by the flow of electric current. The magnetic field disappears when the current is turned off. Electromagnets are widely used as components of other electrical devices, such as motors, generators, relays, loudspeakers, hard disks, MRI machines, scientific instruments, and magnetic separation equipment, as well as being employed as industrial lifting electromagnets for picking up and moving heavy iron objects like scrap iron.
Current (I) through a wire produces a magnetic field (B). The field is oriented according to the right-hand rule.
Magnetic field produced by a solenoid
(coil of wire). This drawing shows a cross section through the center
of the coil. The crosses are wires in which current is moving into the
page; the dots are wires in which current is moving up out of the page.
The main advantage of an electromagnet over a permanent magnet is that the magnetic field can be rapidly manipulated over a wide range by controlling the amount of electric current. However, a continuous supply of electrical energy is required to maintain the field.
Contents |
How the iron core works
The material of the core of the magnet (usually iron) is composed of small regions called magnetic domains that act like tiny magnets (see ferromagnetism). Before the current in the electromagnet is turned on, the domains in the iron core point in random directions, so their tiny magnetic fields cancel each other out, and the iron has no large scale magnetic field. When a current is passed through the wire wrapped around the iron, its magnetic field penetrates the iron, and causes the domains to turn, aligning parallel to the magnetic field, so their tiny magnetic fields add to the wire's field, creating a large magnetic field that extends into the space around the magnet. The larger the current passed through the wire coil, the more the domains align, and the stronger the magnetic field is. Finally all the domains are lined up, and further increases in current only cause slight increases in the magnetic field: this phenomenon is called saturation.When the current in the coil is turned off, most of the domains lose alignment and return to a random state and the field disappears. However some of the alignment persists, because the domains have difficulty turning their direction of magnetization, leaving the core a weak permanent magnet. This phenomenon is called hysteresis and the remaining magnetic field is called remanent magnetism. The residual magnetization of the core can be removed by degaussing.
Electromagnet used in the Tevatron particle accelerator, Fermilab, USA
Magnet in a mass spectrometer
AC electromagnet on the stator of an electric motor
Magnets in an electric bell
History
Beginning in 1827, US scientist Joseph Henry systematically improved and popularized the electromagnet.[9] By using wire insulated by silk thread he was able to wind multiple layers of wire on cores, creating powerful magnets with thousands of turns of wire, including one that could support 2,063 lb (936 kg). The first major use for electromagnets was in telegraph sounders.
The magnetic domain theory of how ferromagnetic cores work was first proposed in 1906 by French physicist Pierre-Ernest Weiss, and the detailed modern quantum mechanical theory of ferromagnetism was worked out in the 1920s by Werner Heisenberg, Lev Landau, Felix Bloch and others.
Uses of electromagnets
Electromagnets are very widely used in electric and electromechanical devices, including:- Motors and generators
- Transformers
- Relays, including reed relays originally used in telephone exchanges
- Electric bells and buzzers
- Loudspeakers and earphones
- Actuators
- Magnetic recording and data storage equipment: tape recorders, VCRs, hard disks
- Scientific instruments such as MRI machines and mass spectrometers
- Particle accelerators
- Magnetic locks
- Magnetic separation equipment, used for separating magnetic from nonmagnetic material, for example separating ferrous metal from other material in scrap.
- Industrial lifting magnets
- Electromagnetic suspension used for MAGLEV trains
Analysis of ferromagnetic electromagnets
For definitions of the variables below, see box at end of article.The magnetic field of electromagnets in the general case is given by Ampere's Law:
Magnetic circuit – the constant B field approximation
Magnetic field (green) of a typical electromagnet, with the iron core C forming a closed loop with two air gaps G in it. Most of the magnetic field B is concentrated in the core. However some of the field lines BL,
called the "leakage flux", do not follow the full core circuit and so
do not contribute to the force exerted by the electromagnet. In the gaps
G the field lines spread out beyond the boundaries of the core in "fringing fields" BF. This increases the "resistance" (reluctance) of the magnetic circuit,
decreasing the total magnetic flux in the core. Both the leakage flux
and the fringing fields get larger as the gaps are increased, reducing
the force exerted by the magnet. Line L shows the average length of the magnetic circuit, used in equation (1) below. It is the sum of the length Lcore in the iron core and the length Lgap in the air gaps
Since most of the magnetic field is confined within the outlines of the core loop, this allows a simplification of the mathematical analysis. See the drawing at right. A common simplifying assumption satisfied by many electromagnets, which will be used in this section, is that the magnetic field strength B is constant around the magnetic circuit and zero outside it. Most of the magnetic field will be concentrated in the core material (C). Within the core the magnetic field (B) will be approximately uniform across any cross section, so if in addition the core has roughly constant area throughout its length, the field in the core will be constant. This just leaves the air gaps (G), if any, between core sections. In the gaps the magnetic field lines are no longer confined by the core, so they 'bulge' out beyond the outlines of the core before curving back to enter the next piece of core material, reducing the field strength in the gap. The bulges (BF) are called fringing fields. However, as long as the length of the gap is smaller than the cross section dimensions of the core, the field in the gap will be approximately the same as in the core. In addition, some of the magnetic field lines (BL) will take 'short cuts' and not pass through the entire core circuit, and thus will not contribute to the force exerted by the magnet. This also includes field lines that encircle the wire windings but do not enter the core. This is called leakage flux. Therefore the equations in this section are valid for electromagnets for which:
- the magnetic circuit is a single loop of core material, possibly broken by a few air gaps
- the core has roughly the same cross sectional area throughout its length.
- any air gaps between sections of core material are not large compared with the cross sectional dimensions of the core.
- there is negligible leakage flux
Magnetic field created by a current
The magnetic field created by an electromagnet is proportional to both the number of turns in the winding, N, and the current in the wire, I, hence this product, NI, in ampere-turns, is given the name magnetomotive force. For an electromagnet with a single magnetic circuit, of which length Lcore is in the core material and length Lgap is in air gaps, Ampere's Law reduces to:[10][11]- where
is the permeability of free space (or air); note that
in this definition is amperes.
- where
For most core materials,
Force exerted by magnetic field
The force exerted by an electromagnet on a section of core material is:Given a core geometry, the B field needed for a given force can be calculated from (2); if it comes out to much more than 1.6 T, a larger core must be used.
Closed magnetic circuit
Force between electromagnets
The above methods are inapplicable when most of the magnetic field path is outside the core. For electromagnets (or permanent magnets) with well defined 'poles' where the field lines emerge from the core, the force between two electromagnets can be found using the 'Gilbert model' which assumes the magnetic field is produced by fictitious 'magnetic charges' on the surface of the poles, with pole strength m and units of Ampere-turn meter. Magnetic pole strength of electromagnets can be found from:The force between two poles is:
This model doesn't give the correct magnetic field inside the core, and thus gives incorrect results if the pole of one magnet gets too close to another magnet.
Side effects in large electromagnets
There are several side effects which become important in large electromagnets and must be provided for in their design:Ohmic heating
Since the magnetic field is proportional to the product NI, the number of turns in the windings N and the current I can be chosen to minimize heat losses, as long as their product is constant. Since the power dissipation, P = I2R, increases with the square of the current but only increases approximately linearly with the number of windings, the power lost in the windings can be minimized by reducing I and increasing the number of turns N proportionally. For example halving I and doubling N halves the power loss. This is one reason most electromagnets have windings with many turns of wire.
However, the limit to increasing N is that the larger number of windings takes up more room between the magnet's core pieces. If the area available for the windings is filled up, more turns require going to a smaller diameter of wire, which has higher resistance, which cancels the advantage of using more turns. So in large magnets there is a minimum amount of heat loss that can't be reduced. This increases with the square of the magnetic flux B2.
Inductive voltage spikes
An electromagnet is a large inductor, and resists changes in the current through its windings. Any sudden changes in the winding current cause large voltage spikes across the windings. This is because when the current through the magnet is increased, such as when it is turned on, energy from the circuit must be stored in the magnetic field. When it is turned off the energy in the field is returned to the circuit.If an ordinary switch is used to control the winding current, this can cause sparks at the terminals of the switch. This doesn't occur when the magnet is switched on, because the voltage is limited to the power supply voltage. But when it is switched off, the energy in the magnetic field is suddenly returned to the circuit, causing a large voltage spike and an arc across the switch contacts, which can damage them. With small electromagnets a capacitor is often used across the contacts, which reduces arcing by temporarily storing the current. More often a diode is used to prevent voltage spikes by providing a path for the current to recirculate through the winding until the energy is dissipated as heat. The diode is connected across the winding, oriented so it is reverse-biased during steady state operation and doesn't conduct. When the supply voltage is removed, the voltage spike forward-biases the diode and the reactive current continues to flow through the winding, through the diode and back into the winding. A diode used in this way is called a flyback diode.
Large electromagnets are usually powered by variable current electronic power supplies, controlled by a microprocessor, which prevent voltage spikes by accomplishing current changes slowly, in gentle ramps. It may take several minutes to energize or deenergize a large magnet.
Lorentz forces
In powerful electromagnets, the magnetic field exerts a force on each turn of the windings, due to the Lorentz force- The field lines within the axis of the coil exert a radial force on each turn of the windings, tending to push them outward in all directions. This causes a tensile stress in the wire.
- The leakage field lines between each turn of the coil exert a repulsive force between adjacent turns, tending to push them apart.
Core losses
In alternating current (AC) electromagnets, used in transformers, inductors, and AC motors and generators, the magnetic field is constantly changing. This causes energy losses in their magnetic cores that are dissipated as heat in the core. The losses stem from two processes:- Eddy currents: From Faraday's law of induction, the changing magnetic field induces circulating electric currents inside nearby conductors, called eddy currents. The energy in these currents is dissipated as heat in the electrical resistance of the conductor, so they are a cause of energy loss. Since the magnet's iron core is conductive, and most of the magnetic field is concentrated there, eddy currents in the core are the major problem. Eddy currents are closed loops of current that flow in planes perpendicular to the magnetic field. The energy dissipated is proportional to the area enclosed by the loop. To prevent them, the cores of AC electromagnets are made of stacks of thin steel sheets, or laminations, oriented parallel to the magnetic field, with an insulating coating on the surface. The insulation layers prevent eddy current from flowing between the sheets. Any remaining eddy currents must flow within the cross section of each individual lamination, which reduces losses greatly. Another alternative is to use a ferrite core, which is a nonconductor.
- Hysteresis losses: Reversing the direction of magnetization of the magnetic domains in the core material each cycle causes energy loss, because of the coercivity of the material. These losses are called hysteresis. The energy lost per cycle is proportional to the area of the hysteresis loop in the BH graph. To minimize this loss, magnetic cores used in transformers and other AC electromagnets are made of "soft" low coercivity materials, such as silicon steel or soft ferrite.
High field electromagnets
Superconducting electromagnets
Main article: Superconducting magnet
When a magnetic field higher than the ferromagnetic limit of 1.6 T is needed, superconducting electromagnets can be used. Instead of using ferromagnetic materials, these use superconducting windings cooled with liquid helium, which conduct current without electrical resistance.
These allow enormous currents to flow, which generate intense magnetic
fields. Superconducting magnets are limited by the field strength at
which the winding material ceases to be superconducting. Current designs
are limited to 10–20 T, with the current (2009) record of 33.8 T.[12] The necessary refrigeration equipment and cryostat
make them much more expensive than ordinary electromagnets. However, in
high power applications this can be offset by lower operating costs,
since after startup no power is required for the windings, since no
energy is lost to ohmic heating. They are used in particle accelerators, MRI machines, and research.Bitter electromagnets
Main article: Bitter electromagnet
Both iron-core and superconducting electromagnets have limits to the
field they can produce. Therefore the most powerful man-made magnetic
fields have been generated by air-core nonsuperconducting electromagnets of a design invented by Francis Bitter in 1933, called Bitter electromagnets.[13] Instead of wire windings, a Bitter magnet consists of a solenoid
made of a stack of conducting disks, arranged so that the current moves
in a helical path through them. This design has the mechanical strength
to withstand the extreme Lorentz forces of the field, which increase with B2.
The disks are pierced with holes through which cooling water passes to
carry away the heat caused by the high current. The strongest continuous
field achieved with a resistive magnet is currently (2008) 35 T,
produced by a Bitter electromagnet.[12] The strongest continuous magnetic field, 45 T,[13] was achieved with a hybrid device consisting of a Bitter magnet inside a superconducting magnet.Exploding electromagnets
The factor limiting the strength of electromagnets is the inability to dissipate the enormous waste heat, so more powerful fields, up to 100 T,[12] have been obtained from resistive magnets by sending brief pulses of current through them. The most powerful manmade magnetic fields have been created by using explosives to compress the magnetic field inside an electromagnet as it is pulsed. The implosion compresses the magnetic field to values of around 1000 T[13] for a few microseconds. While this method may seem very destructive there are methods to control the blast so that neither the experiment nor the magnetic structure are harmed, by redirecting the brunt of the force radially outwards. These devices are known as destructive pulsed electromagnets. They are used in physics and materials science research to study the properties of materials at high magnetic fields.Definition of terms
square meter | cross sectional area of core | |
tesla | Magnetic field (Magnetic flux density) | |
newton | Force exerted by magnetic field | |
ampere per meter | Magnetizing field | |
ampere | Current in the winding wire | |
meter | Total length of the magnetic field path |
|
meter | Length of the magnetic field path in the core material | |
meter | Length of the magnetic field path in air gaps | |
ampere meter | Pole strength of the electromagnet | |
newton per square ampere | Permeability of the electromagnet core material | |
newton per square ampere | Permeability of free space (or air) = 4π(10−7) | |
- | Relative permeability of the electromagnet core material | |
- | Number of turns of wire on the electromagnet | |
meter | Distance between the poles of two electromagnets |
No comments:
Post a Comment